Страница 18 из 19
Другой путь гашения предусмотрен в самогасящихся счетчиках. Гашение здесь достигается благодаря наполнению баллона детектора "гасящей" смесью, которая обычно представляет собой смесь аргона с парами спирта или какого-либо многоатомного газа (этана, этилена и др.). Газ в счетчике, тем не менее, находится под разряжением (общее давление 133 гПа). При соударении ионов аргона с нейтральной многоатомной молекулой обычно происходит электронный переход от неё к катиону аргона, так как этот процесс энергетически выгоден. Эти переходы сопровождаются высвечиванием фотонов с энергией несколько электрон-вольт, которые снова с большой вероятностью поглощаются парами органической добавки. Катода достигают почти исключительно ионы многоатомного соединения, которые, разряжаясь на нем (т.е. присоединяя к себе "вырванный" из фотокатода электрон), превращаются в нейтральные, хотя и возбужденные молекулы. Эти молекулы с большей вероятностью распадаются (необратимо диссоцируют), чем высвечивают фотоны. Следовательно, разряд обрывается. Таким образом, многоатомный газ выполняет две функции: во-первых, он не позволяет фотонам достичь катода и вызвать тaм фотоэффект, который мог бы породить новую "паразитную" лавину; во-вторых, его катионы, преимущественно разряжаясь на катоде, резко снижают вероятность выбивания из катода вторичных электронов катионами аргона, ибо ионы гасящего газа в отличие от ионов аргона не вырывают с поверхности катода свободные электроны.
Вот так предупреждается образование новой "паразитной" лавины, о которой шла речь выше, и разряд будет завершен после одной электронно-фотонной лавины, возникшей после одного акта первичной ионизации.
Самогасящиеся счетчики имеют ограниченный срок жизни из-за необратимого распада молекул гасящего газа: после фиксации около 109 импульсов счетчик приходит в негодность. В этом отношении большими преимуществами обладают так называемые галогенные счетчики. Они обычно заполняются неоном (с очень небольшой примесью аргона), а роль гасящей добавки в этих счетчиках выполняют галоиды при содержании около 0,1%. Уже при небольших напряжениях вторичные электроны будут возбуждать атомы неона, которые, в свою очередь, будут ионизировать атомы аргона (метастабильный уровень неона 16,57 эВ, а ионизационный потенциал аргона 15,7 эВ). Образовавшиеся ионы аргона при соударениях с молекулами галоида станут нейтрализоваться за счет ионизации галоидов. В итоге к аноду будут в основном подходить возбужденные ионы галоида, которые с малой вероятностью способны "вырвать" при разряжении из катода дополнительные электроны (потенциал ионизации галоидов сравнительно невелик). Возбуждение разряженных ионов снимается обратимой диссоциацией молекул галоида. Это обстоятельство и обрывает "паразитную" лавину. Вследствие того, что в газовой смеси с добавкой галогенов протекают только обратимые процессы, срок службы таких счетчиков никак не связывается с общим числом зарегистрированных импульсов: теоретически он бесконечен (хотя "ничто не вечно под луной").
Счетчик Гейгера-Мюллера прост, дешев и надежен; столь же простой является и регистрирующая аппаратура. Но разрешающая способность этих счетчиков относительно невысока: так называемое "мертвое время" (время после регистрации импульса, в течение которого счетчик не реагирует на новые акты ионизации, происходящие внутри него) имеет порядок 10–4 с. Поэтому рекомендуется ограничивать скорость счета при измерении активности препарата, не поднимая ее выше значений (3–6) 103 имп/мин, – при этих условиях не требуется введения специальных поправок на "мертвое время" данным измерениям. Эта рекомендация, разумеется, имеет смысл только тогда, когда экспериментатор сам изготовляет препарат или влияет на его изготовление.
Итак, амплитуда импульса, возникающего в счетчике под действием ионизирующей частицы, зависит от напряжения на электродах, а для пропорциональных счетчиков – и от энергии частицы. Подаваемое на счетчик напряжение всегда колеблется в некоторых пределах, а энергии отдельных частиц могут сильно различаться между собой (например, у β-радиоактивных нуклидов). Поэтому для того чтобы работа счетчика была удовлетворительна, необходимо среди других условий соблюдать следующие два. Во-первых, любая ионизирующая частица должна возбуждать в счетчиках только один импульс и, во-вторых, регистрирующее устройство должно срабатывать на каждый возникающий в детекторе импульс. Если эти условия выполнены, то число импульсов, регистрируемых в единицу времени от одного и того же радиоактивного препарата (так называемая скорость счета), остается постоянным в некоторой области напряжений, подаваемых на счетчик. Эта область напряжений и является рабочей областью счетчика.
Для нахождения рабочей области напряжений снимают, используя препарат с постоянной радиоактивностью, счетную характеристику счетчика – зависимость скорости счета импульсов от приложенного напряжения. Типичная счетная характеристика газового счетчика приведена на рис. 1.17.
В точке Uа, соответствующей началу счета, начинается регистрация импульсов. Область, отвечающую напряжениям UbUc, называют плато счетной характеристики. У некоторых типов газовых счетчиков плато начинается практически сразу же (через 10–15 В) после напряжения начала счета. Регистрируемая скорость счета в области плато может несколько увеличиваться с ростом напряжения на счетчике, что объясняется появлением ложных импульсов, образующихся, например, за счет эмиссии вторичных электронов с катода. Поэтому в области плато счетная характеристика часто имеет небольшой наклон.
Количественно наклон плато счетной характеристики (%) оценивают по формуле ,
где ΔI – увеличение скорости счета при изменении напряжения на счетчике на ΔU В.
Рис. 1.17.Типичная счетная характеристика газового счетчика.
Счетная характеристика тем лучше, чем больше плато по протяженности и чем меньше его наклон. Длина плато и его наклон зависят от того, в каком режиме – пропорциональном или гейгеровском – работает счетчик, и от его конструктивных особенностей. У лучших счетчиков наклон плато практически отсутствует, а протяженность плато достигает 400–500 В. Счетчик считается пригодным для работы, если наклон плато счетной характеристики и его протяженность не выходят за пределы, указанные в паспорте счетчика.
Рабочее напряжение Up, при котором ведут измерение на счетчике, рекомендуется выбирать в середине плато или в первой трети плато, при условии стабильного напряжения на электродах счетчика и постоянно (не реже 1 раза в 2–3 дня) контролировать положение рабочего напряжения на плато счетной характеристики.
По своему внешнему виду кривая, приведенная на рис. 17, напоминает график зависимости амплитуды импульса или тока от напряжения (см. рис. 1.14 и 1.16). Это сходство иногда приводит к путанице. Следует иметь в виду, что сходство между кривыми чисто формальное. Если на рис. 16 речь идет об изменении амплитуды импульса, вызванного прохождением через детектор одной ядерной частицы, то на рис. 17 о числе регистрируемых в единицу времени импульсов, причем соответствующие им амплитуды могут быть как равны, так и различны.
В основе работы сцинтилляционного детектора лежит способность некоторых материалов – сцинтилляторов – преобразовывать энергию ядерных излучений в фотоны – кванты видимого или ультрафиолетового светового излучения. Отдельная вспышка света, вызванная прохождением через сцинтиллятор ядерной частицы или γ-кванта, Получила название сцинтилляции.