Добавить в цитаты Настройки чтения

Страница 6 из 14



Материалистический взгляд на жизнь как машину приводил некоторых ученых к попытке сотворения искусственной жизни вне биологии, на основе механических систем и математических моделей. К 1950-м, когда ДНК окончательно признали материальным носителем генов, механистический подход уже маячил в научной литературе. В этой версии жизнь должна появляться из сложных механизмов, а не из сложной химии. В 1929 году молодой ирландский кристаллограф Джон Десмонд Бернал (1901–1971) представил возможность существования машин с жизнеподобной способностью к воспроизведению себя в «постбиологическом будущем», которое он описал в книге «Мир, плоть и дьявол»: «Создать саму жизнь будет лишь предварительным этапом. Изготовление жизни как таковой будет важно лишь тогда, если мы собираемся позволить ей заново развиваться самой».

Логичный рецепт по сотворению этих сложных механизмов был разработан в следующем десятилетии. В 1936 году Алан Тьюринг, криптограф и пионер искусственного интеллекта, описал то, что обрело известность как машина Тьюринга, а именно набор инструкций, написанных на ленте. Тьюринг также определил универсальную машину Тьюринга, которая может выполнять любые вычисления, для которых можно написать инструкции. Это стало теоретической основой цифрового компьютера.

Идеи Тьюринга были развиты далее в 1940-х знаменитым американским математиком и энциклопедистом Джоном фон Нейманом, который задумал самовоспроизводящуюся машину. Подобно тому, как Тьюринг предвидел универсальную машину, фон Нейман предвидел универсальный конструктор. Родившийся в Венгрии гений очертил свои идеи в лекции «Общая и логическая теория автоматов» на симпозиуме Хиксона 1948 года в Пасадене, Калифорния. Он указал, что «живые организмы гораздо более сложны и тоньше устроены и, следовательно, значительно менее понятны в деталях, чем искусственные автоматы». Тем не менее он утверждал, что некоторые из закономерностей, которые мы наблюдаем у первых, могут быть поучительными для размышлений о последних и их проектирования.

Машина фон Неймана включает в себя «ленту» из ячеек, которая кодирует последовательность выполняемых машиной действий. Используя записывающую головку (обозначенную как «сборочный манипулятор»), машина может построить новую систему ячеек – в частности, может сделать полную копию и себя, и ленты. Репликатор фон Неймана был неуклюжей на вид структурой, состоящей из основной области в восемьдесят на четыреста квадратов, сборочного манипулятора и «хвоста Тьюринга» – полосы закодированных инструкций, состоящей из еще 150 000 квадратов. («Автоматы [Тьюринга] – это чисто вычислительные машины, – пояснял фон Нейман. – Что на самом деле нужно – так это автомат, производящий другие автоматы»{31}.) Все это творение состояло примерно из двухсот тысяч таких «клеток». Чтобы воспроизводиться, машина использовала «нейроны», обеспечивающие логическое управление, передающие клетки для передачи сообщений от центров управления, и «мышцы», чтобы изменять окружающие клетки. По инструкциям хвоста Тьюринга машина выдвигала манипулятор, а затем водила им вперед-назад, создавая копию себя при помощи ряда логических манипуляций. Копия затем могла сделать новую копию и так далее.

Природа этих инструкций стала с тех пор яснее по мере параллельного развития цифрового мира и биологических миров науки. Эрвин Шрёдингер писал тогда то, что вроде бы стало первым упоминанием его «кодированной записи»: «Именно эти хромосомы или, возможно, только осевая или скелетная нить того, что мы видим под микроскопом как хромосому, содержат в виде своего рода [кодированной записи[5] ] весь “план” будущего развития индивидуума и его функционирования в зрелом состоянии».

Шрёдингер продолжал утверждать, что «кодированная запись» может быть простой, как бинарный код: «Действительно, число атомов в такой структуре не обязано быть очень велико, чтобы получить практически неограниченное число возможных сочетаний. Для примера вспомним азбуку Морзе. Два разных знака – точка и тире – в хорошо упорядоченных группах не более чем по четыре символа дают тридцать разных спецификаций{32}».

Хотя фон Нейман придумал свой самовоспроизводящийся автомат за несколько лет до того, как в двойной спирали ДНК был открыт реальный наследственный код, он отметил, что у автомата должна быть способность эволюционировать. В своей Хиксоновской лекции он поведал аудитории, что каждая инструкция в такой машине «грубо говоря, выполняет функции гена», и продолжил описанием того, как ошибки автомата «могут проявлять некоторые характерные черты мутации – как правило, летальной, но иногда способной продолжать воспроизводиться вместе с соответствующим изменением признака». Как заметил генетик Сидней Бреннер, можно сказать, что биология дает наилучшие реальные образцы машин Тьюринга и фон Неймана: «Понятие гена как символического – в виде кодированной записи – представления организма – это фундаментальная черта живого мира»{33}.

Фон Нейман, упорно следуя своему исходному понятию репликатора, придумал чисто логический автомат, не требующий физического носителя и целого моря деталей, а основанный на изменяющемся состоянии ячеек в решетке. Его коллега по Лос-Аламосу (где они работали в проекте «Манхэттен») Станислав Улам предложил фон Нейману использовать для разработки его устройства математическую абстракцию вроде той, которую сам Улам применял для изучения роста кристаллов. Фон Нейман представил получившийся «самовоспроизводящийся автомат» – первый клеточный автомат – на Ванаксемских лекциях о «Машинах и организмах» в Принстонском университете между 2 и 5 марта 1953 года.

Попытки моделирования жизни продолжались, но тут изменилось наше понимание биологии, лежащее в их основе: 25 апреля 1953 года Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature{34} ключевую статью «Молекулярное строение нуклеиновых кислот: структура дезоксирибонуклеиновой кислоты». Их работа, выполненная в Кембридже (Англия) и опиравшаяся на рентгенокристаллографические данные Розалинд Франклин и Рэймонда Гослинга из Королевского колледжа в Лондоне, предлагала двойную спиральную структуру ДНК. Уотсон и Крик описали элегантную функциональную молекулярную структуру двойной спирали и то, как ДНК воспроизводится, чтобы ее инструкции передавались из поколения в поколение. Это был природный самовоспроизводящийся автомат.

Начало попыток создания другого рода самовоспроизводящихся автоматов, как и начало исследований искусственной жизни, датируются примерно этим же периодом, когда стали использоваться первые современные компьютеры. Открытие кодированной природы генетической информационной системы жизни естественным образом привело к параллели с машинами Тьюринга. Сам Тьюринг в своей важнейшей статье 1950 года об искусственном интеллекте обсуждал, что выживание наиболее приспособленных – это «медленный метод», который можно было бы подтолкнуть, и не в последнюю очередь потому, что экспериментатор не ограничен случайными мутациями{35}. Многие поверили, что искусственная жизнь появится из сложных логических взаимодействий в компьютере.

В этой точке сошлись разные течения мысли: теории фон Неймана с его работами по ранним компьютерам и самовоспроизводящимся автоматам; Тьюринга, поставившего основные вопросы о машинном разуме{36}; и американского математика Норберта Винера, который применил идеи из теории информации и саморегулирующихся процессов к живым существам в области кибернетики{37}, описав это в своей книге «Кибернетика», выпущенной в 1948 году. Было много последовательных попыток возжечь в компьютере жизнь. Одна из самых ранних случилась в Институте перспективных исследований в Принстоне в 1953 году, когда норвежско-итальянский генетик-вирусолог Нильс Аол Барричелли провел эксперименты «с целью проверить возможность эволюции, сходной с таковой у живых организмов, в искусственной вселенной»{38}. Он сообщил о различных «биофеноменах», например об успешном скрещивании родительских «организмов», роли пола в эволюционных изменениях и роли сотрудничества в эволюции{39}.

31

Dyson, George. Turing’s Cathedral: The Origins of the Digital Universe (Allen Lane, London, 2012), стр. 284.

5

В русском переводе А. А. Малиновского, откуда взята основная цитата, значится «шифровальный код».

32



Schrodinger, Erwin. What is Life? (1944), стр. 20–21.

33

Bre

34

Watson, J. D., and F. H. Crick (April 1953). “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.” Nature, 171 (4356), стр. 737–738.

35

Turing, A. M. “Computing Machinery and Intelligence.” Mind, New Series, Vol. 59, № 236, октябрь 1950, стр. 433–460.

36

http://www.loebner.net/Prizef/TuringArticle.html

37

Bedau, Mark A. “Artificial life: organization, adaptation and complexity from the bottom uстр.” Trends in Cognitive Sciences (November 2003). http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf

38

Dyson, George. Turing’s Cathedral: The Origins of the Digital Universe (Allen Lane, London, 2012), стр. 3.

39

http://www.edge.org/3rd_culture/dyson/dyson_p2.html