Добавить в цитаты Настройки чтения

Страница 6 из 9



Дифференциальная защиита – один из видов релейной защиты, отличающийся абсолютной селективностью и выполняющийся быстродействующей (без искусственной выдержки времени). Применяется для защиты трансформаторов, автотрансформаторов, генераторов, генераторных блоков, двигателей, воздушных линий электропередачи и сборных шин (ошиновок). Различают продольную и поперечную дифференциальные защиты.

Рисунок 3 – Схема дифференциальной защиты

Принцип действия продольной дифференциальной защиты основан на сравнении токов, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока (TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле (KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.

В нормальном режиме значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания на защищаемом участке, на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.

В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса.

Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.

Принцип действия поперечной дифференциальной защиты так же заключается в сравнении значений токов, но в отличие от продольной, трансформаторы тока устанавливаются не на разных концах защищаемого участка, а на разных линиях, отходящих от одного источника (например, на параллельных кабелях, отходящих от одного выключателя). Если произошло внешнее короткое замыкание, то данная защита его не почувствует, так как разность значений силы тока, измеряемых на этих линиях, будет практически равна нулю. В случае же короткого замыкания непосредственно на одном из защищаемых кабелей разница токов не будет равняться нулю, что даст основание для срабатывания защиты.

Принцип действия заключается в заблаговременном обнаружении, предсказывании возникновения токов короткого замыкания на линиях. Данная установка позволяет обесточивать линию до возникновения короткого замыкания в сети.

Аппаратная часть установки состоит из следующих элементов: трансформатор тока; осциллограф arduino; цифровая платформа arduino; блок отключения цепи.

При помощи трансформатора тока осуществляется контроль характеристик значений токов в цепи. При помощи цифрового осциллографа производим построение кривой тока, далее производится обработка полученных данных цифровой платформой Arduino, и передача управляющего сигнала на блок отключения цепи.

Рисунок 4 – Блок-схема работы устройства.

Таблица 1 – Характеристики цифровой платформы Arduino

Ниже представлены формулы, по которым будет представлена математическая модель программы.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)



 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

Основываясь на показаниях осциллографа, вычислено значение коэффициента мощности и найден тангенс этого угла. Подставляя полученное значение в выражение:

 (18)

Вычисляем пиковое значение тока короткого замыкания, при котором мы подаем сигнал на отключение.

Данная установка позволит предотвратить коммутацию токов короткого замыкания, за счет своевременного обнаружения и подачи сигнала на отключающее устройство. Все это позволяет выполнить высокая тактовая частота цифровой платформы Arduino, равная 16 МГц.

Особенности проведения планово-предупредительных ремонтов на объектах электроэнергетики

Булгакова Т. А. – студент группы Э-31, Грибанов А. А. – к.т.н., доцент РФ, Алтайский край, г. Барнаул, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова»

Одной из главных задач электроэнергетических организаций является обеспечение бесперебойного и надёжного электроснабжения потребителей электрической энергией, поэтому планирование ремонтов электроэнергетического оборудования играет немаловажную роль. От того, как будет организовано данное планирование, зависит не только качество выполнения ремонтных работ, но и функционирование всех объектов, питающихся электроэнергией.

Несмотря на то, что в настоящее время оборудование имеет высокую степень надёжности, однако в процессе эксплуатации под действием внешних факторов и режимов работы его состояние ухудшается и увеличивается вероятность выхода из строя. Потеря надёжности ведёт к возникновению перерывов в питании потребителей.

Такие перерывы могут носить, как плановый, так и аварийный характер. Возникающие перерывы электроснабжения в различной степени парализуют жизнь общества, порождают негативные последствия, поэтому проблема надёжного электроснабжения имеет огромное значение. Вопросы, возникающие при решении этой проблемы, определяются особенностями электрической энергии. Главной особенностью является невозможность её «складирования» и как следствие, процесс производства, передачи и потребления непрерывен.