Страница 12 из 90
Цитоплазма составляет основную массу клетки и представляет собой клеточную жидкость с расположенными в ней органеллами и включениями. Органеллы - постоянные компоненты цитоплазмы, выполняющие специфические важные функции. Из них нас больше всего интересуют митохондрии, которые иногда называют электростанциями клетки. Каждая митохондрия имеет две мембранные системы: наружную и внутреннюю. Наружная мембрана гладкая, в ней поровну предс-тавлены липиды и белки. Внутренняя мембрана принадлежит к наиболее сложным типам мембранных систем человеческо-го организма. В ней множество складок, называемых гребешками (кристами), за счет которых мембранная поверхность существенно увеличивается. Можно представить эту мембрану в виде множества грибовидных выростов, направленных во внутреннее пространство митохондрии. На одну митохондрию приходится 10 в 4-10 в 5 степени таких выростов.
Кроме того, во внутренней митохондриальной мембране присутствует еще 50-60 ферментов, общее число молекул разных типов достигает 80. Все это необходимо для химического окисления и энергетического обмена. Среди физических свойств этой мембраны следует отметить высокое электрическое сопротивление, что характерно для так называемых сопрягаю-щих мембран, способных аккумулировать энергию подобно хорошему конденсатору. Разность потенциалов по обе стороны внутренней митохондриальной мембраны составляет около 200-250 мВ.
Можно представить, насколько сложна клетка, если, например, печеночная клетка гепатоцит содержит около 2000 митохондрий. Но ведь в клетке множество и других органелл, сотни ферментов, гормонов и других сложных веществ. Каждая органелла имеет свой набор веществ, в ней осуществляются определенные физические, химические и биохимичес-кие процессы. В таком же динамическом состоянии находятся вещества в цитоплазматическом пространстве, они беспре-рывно обмениваются с органеллами и с внешним окружением клетки через ее мембрану.
Прошу прощения у Читателя - неспециалиста за технические детали, но эти представления о клетке полезно знать каждому человеку, желающему быть здоровым. Мы должны восхищаться этим чудом природы и одновременно учитывать слабые стороны клетки, когда занимаемся лечением. Мне доводилось наблюдать, когда обычный анальгин приводил к отекам тканей у молодого здорового человека. Поражает, как не задумываясь, с какой легкостью иные глотают таблетки!
Представления о сложности клеточного функционирования будут не полными, если мы не расскажем об энергетике клеток. Энергия в клетке тратится на выполнение различной работы: механическую - движение жидкости, движение органелл; химическую - синтез сложных органических веществ; электрическую - создание разности электрических потенциа-лов на плазматических мембранах; осмотическую - транспорт веществ внутрь клетки и обратно. Не ставя перед собой задачу перечислить все процессы, ограничимся известным утверждением: без достаточного обеспечения энергией не может быть достигнуто полноценное функционирование клетки.
Откуда клетка получает необходимую ей энергию? Согласно научным теориям химическая энергия питательных веществ (углеводов, жиров, белков) превращается в энергию макроэргических (содержащих много энергии) связей аденозинтрифос-фата (АТФ). Эти процессы осуществляются в митохондриях клеток преимущественно в цикле трикарбоновых кислот (цикл Кребса) и при окислительном фосфорилировании. Запасенная в АТФ энергия легко освобождается при разрыве макроэрги-ческих связей, в результате обеспечиваются энергозатраты в организме.
Однако эти представления не позволяют дать объективную оценку количественных и качественных характеристик энергообеспечения и энергообмена в тканях, а также состояния энергетики клеток и межклеточного взаимодействия. Следует обратить внимание на важнейший вопрос (Г. Н. Петракович), на который не может ответить традиционная теория: за счет каких факторов осуществляется межклеточное взаимодействие? Ведь АТФ образуется и расходуется, выделяя энергию, внутри митохондрии.
Между тем, имеется достаточно оснований сомневаться в благополучии энергообеспечения органов, тканей, клеток. Можно даже прямо утверждать, что человек в этом отношении весьма не совершенен. Об этом свидетельствует уста-лость, которую ежедневно многие испытывают, и которая начинает досаждать человеку с детского возраста.
Проведенные расчеты показывают, что если бы энергия в человеческом организме производилась за счет указанных процессов (цикл Кребса и окислительное фосфорилирование), то при малой нагрузке энергетический дефицит составлял бы 30-50%, а при большой нагрузке - более 90%. Это подтверждают исследования американских ученых, которые пришли к выводу о недостаточном функционировании митохондрий в плане обеспечения человека энергией.
Вопросы об энергетике клеток и тканей возможно еще долго оставались бы на обочине дороги, по которой медленно движется теоретическая и практическая медицина, если бы не произошли два события. Речь идет о Новой гипотезе дыхания и открытии Эндогенного Дыхания.
9. Новая гипотеза о дыхании
В 1992 году в журнале "Русская мысль" № 2 появилась статья Г. Н. Петраковича "Свободные радикалы против аксиом. Новая гипотеза о дыхании".
Автор статьи, московский врач-хирург и талантливый ученый, излагает совершенно новые представления о, казалось бы, всем известном дыхании и связанными с ним обменными процессами в организме.
Что же нового увидел Г. Н. Петракович в нашем "очень изученном" организме? Ответ на этот вопрос может быть коротко сформулирован в трех положениях:
- клетки обеспечивают свои потребности в энергии и кислороде за счет реакции свободно-радикального окисления ненасыщенных жирных кислот их мембран;
- побуждение клеток к указанной реакции и, следовательно, к активной работе осуществляют эритроциты крови за счет передачи им электронного возбуждения;
- электронное возбуждение эритроцитов крови осуществляется в капиллярах альвеол за счет энергии реакции углеводородов тканей с кислородом воздуха, которая протекает по механизму горения.