Добавить в цитаты Настройки чтения

Страница 5 из 12



После такого успеха HEND его российского «брата» DAN «усадили» прямо на марсоход, и он теперь собирает данные не с высоты 300 километров, как предшественник, а гораздо ниже – с полуметра. Правда, глубина зондирования по-прежнему не превышает одного метра, зато пространственное разрешение увеличилось с десятков километров до сантиметров.

Впрочем, несмотря на успехи нейтронных детекторов, окончательного доверия к ним еще нет. Ледники на Луне ждут своего первооткрывателя, а космические агентства, как и частные компании, все больше внимания обращают на ее полюса. Хотя концентрация влаги на Луне, по данным спутников, не превышает 4 %.

Зондирование планет в радиодиапазоне начали проводить еще с Земли. Много информации смог собрать известный радиотелескоп Аресибо в Пуэрто-Рико, чья параболическая антенна диаметром в 300 метров появлялась во множестве голливудских фильмов. Еще в 80-е годы он обнаружил на полюсах горячего Меркурия странный отблеск, источником которого мог стать водяной лед. Ученые долго не могли поверить в то, что на самой близкой к Солнцу планете могут существовать ледники. Пришлось ждать результатов зонда Messenger, который при помощи нейтронного детектора и лазерной локации смог подтвердить факт наличия льда на полюсах Меркурия.

Впечатляющие картины показал радиотелескоп Аресибо во время суперлуния 2013 г. На Луне с его помощью удалось разглядеть последствия катастрофических лавовых потоков и «наводнений». Если совместить эти снимки с картами распределения минералов, полученных с орбитальных спектрометров, то можно составить подробную геологическую карту местности и, возможно, реконструировать эволюцию поверхности Луны. К ней неоднократно отправляли радары на спутниках, но их энергии было недостаточно, чтобы проникнуть глубоко в грунт.

Радиоволны позволяют не только заглядывать под поверхность планет и спутников, но и показывают высокую эффективность на облачных планетах. Три радара летало к Венере. «Венера-15» и «Венера-16» провели картографирование северного полюса в 80-е годы, а потом, в 90-е, Magellan составил почти полную его карту.

Аппарат Cassini на орбите Сатурна использовал свой радарный инструмент, чтобы проникнуть сквозь плотную атмосферу его спутника Титана. В ходе многочисленных пролетов космическая станция Cassini постепенно приоткрывала вечную пелену атмосферы и открывала науке этот поистине удивительный мир, в чем-то невероятно похожий на земной, а в чем-то разительно от него отличающийся. Многократная радарная съемка позволила не просто картографировать Титан, но и наблюдать динамические процессы на нем. Так, таинственно появившийся, а потом исчезнувший остров, сочли признаком происходящих сезонных изменений на самом крупном спутнике Сатурна. Возможно, это был ледяной айсберг, обрушившийся в метановое море.

Другие диапазоны радиоволн и другая конструкция радара позволяют забираться гораздо глубже. На орбите Марса работают два космических аппарата, оборудованные радарами, чьи волны проникают в кору планеты на 1–3 километра.

Исследование европейского космического аппарата Mars Express позволило получить информацию о мощности и структуре полярных льдов и оценить запасы воды на полюсах Марса. Его же сканирование позволило обнаружить древние астероидные кратеры, погребенные под сотнями метров вулканической лавы и осадочными накоплениями марсианского океана в северном полушарии планеты. Ранее ученые неоднократно отмечали видимую разницу в количестве метеоритных кратеров в южном и северном полушариях Марса, и Mars Express позволил разгадать эту загадку. А если бы на «Красной планете» существовали марсиане, зарывшиеся от вакуума, засухи и мороза в подмарсианский город-убежище, то Mars Express нашел бы его.

Радар привезли даже на поверхность Луны. Китайский луноход Yutu («Нефритовый заяц») успел пройти всего сотню метров, но даже во время такого короткого пути ему удалось получить интереснейшие профили лунной поверхности на глубину около четырехсот метров. В будущем такая информация будет жизненно необходима для строительства лунной станции, базы или поселения.



Когда дело доходит до исследования космических тел посадочными аппаратами, практически невозможно обойтись без трогательных – в прямом смысле – моментов альфа-лучевой рентгенофлоуресцентной спектроскопии.

Приборы типа APXS (Alpha Particle X-Ray Spectrometer) устанавливались на все марсоходы NASA. APXS имеется на посадочном аппарате Philae на ядре кометы 67P/Чурюмова-Герасименко. На советских луноходах был установлен похожий прибор – РИФМА. Принцип работы метода напоминает гамма-спектроскопию, за тем исключением, что датчик имеет свой собственный источник заряженных частиц (какой-нибудь радиоактивный материал), прежде всего альфа-лучей. Заряженными частицами бомбардируется исследуемый образец, в ходе процессов поглощения альфа-частиц ядрами атомов выделяется рентгеновское излучение. Для каждого химического элемента спектр излучения будет свой, что позволяет определять химический состав образца.

Это далеко не исчерпывающий обзор оборудования для исследования Солнечной системы. Как правило, на межпланетные аппараты ставятся и астрофизические приборы для регистрации энергичных частиц, межпланетной радиации, плазмы и пыли. Межпланетные перелеты позволяют изучать еще и космическое пространство, взаимосвязи Солнца, планет и межзвездной среды, но это уже другая история.

1.5. Кто, как и зачем обрабатывает снимки из космоса

Фотографии из космоса, публикуемые на сайте NASA и других космических агентств, иногда вызывают сомнения в подлинности – внимательные энтузиасты находят на изображениях следы редактирования, ретуширования или манипуляций с цветом. Так повелось еще со времен зарождения «лунного заговора», а теперь под подозрение попали снимки, сделанные не только американцами, но и европейцами, японцами, индийцами. Разберемся, зачем вообще обрабатывают космические изображения и могут ли они, несмотря на это, считаться подлинными.

Для того чтобы правильно оценивать качество космических снимков, которые мы находим в Сети, необходимо учитывать два важных фактора. Один из них связан с характером взаимодействия космических агентств и широкой публики, другой продиктован физическими законами.

Как правило, тот, кто упрекает космические агентства за манипуляции с цветом, использование фильтров или публикацию черно-белых фотографий «в наш век прогресса цифровых технологий», не учитывает физических процессов получения цифровых изображений. Как мы уже знаем, обычные земные фотоаппараты снимают точно так же, как профессиональные телескопы – через цветные фильтры, только они не показывают нам промежуточные этапы подготовки снимков.

Космические снимки – одно из самых эффективных средств популяризации исследовательских миссий в ближнем и дальнем космосе. Однако далеко не все кадры сразу оказываются в распоряжении СМИ.