Добавить в цитаты Настройки чтения

Страница 13 из 23



Информационная грамотность подразумевает понимание того, что допущения – свойственная описаниям неопределенность – это неотъемлемый элемент прогноза, а для инструкций обязательно нужна обратная связь. Стоит ли инфообработчикам помещать вас в какой-либо маркетинговый сегмент на основе истории ваших поисковых запросов в Google? Можно ли объективно судить о кандидате на должность исключительно на основе анализа данных о его контактах в LinkedIn? Насколько обоснованными будут индивидуальные рекомендации по физическим нагрузкам, в основу которых положен анализ информации из Facebook о посещении этим человеком ресторанов?

Инфопереработчики не только описывают, прогнозируют и инструктируют – они еще и экспериментируют. Вполне возможно, что над вами экспериментируют каждый раз, когда вы покупаете бестселлеры в Amazon, подбираете себе мокасины в Zappos или ищете пару на Match.com. Эксперименты нужны, чтобы совершенствовать продукты и услуги инфопереработки при помощи так называемого А/В-тестирования.

В науке причинно-следственная связь устанавливается экспериментальным путем: реакция на изменение одной независимой переменной в экспериментальной группе сравнивается с реакцией контрольной группы, для которой эта переменная остается неизменной. А/В-эксперименты, как правило, начинаются с вопроса. Например: «Какими зонтиками, красными или синими, мне нужно торговать, чтобы максимизировать их продажи?» Этот вопрос кажется очень простым, но из него вытекает масса сложностей в проведении удачного А/В-эксперимента. Продавец зонтиков может попытаться найти правильное решение, поставив свой прилавок на некой точке и продавая только синие зонтики в первый день и только красные – на второй. Он может даже проводить этот эксперимент два понедельника подряд, когда работающие в этом районе вроде бы должны быть более склонны забывать зонтики в суматохе перед выходом из дому. Но, определяя место для торговой точки и день недели для эксперимента, он не принимает в расчет одну из самых важных переменных, определяющих потребность в любом зонтике, красном или синем, а именно – идет ли дождь.

Инфопереработчикам приходится учитывать намного больше переменных, чем нашему торговцу зонтиками. В Amazon все, что касается внешнего вида страниц, от размера строки поиска до места размещения диалогового окна, от опций оформления и оплаты до части описания товара, доступной без второго клика, решается после проведения А/В-экспериментов. Широко известна история про то, как Google проводила А/В-эксперименты для определения оттенка синего цвета для рекламных ссылок. Источники в Google утверждают, что в результате выбора одного из пятидесяти возможных вариантов ежегодная выручка от рекламы возросла на 200 миллионов долларов[61].

Описательный анализ дает возможность выявлять «естественные эксперименты» – ситуации, когда можно проследить последствия изменения некоего условия, произошедшего случайно или по ошибке (например, когда при внедрении программного обеспечения обнаруживается баг). Веб-разработчики французского сайта Amazon каким-то образом умудрились забыть добавить услугу доставки в стоимость оформления заказа. Резкий рост заказов, последовавший в результате этой ошибки, дал Amazon представление о том, насколько бесплатная доставка способствует увеличению продаж.

В основе научного метода лежит прогноз: ученый создает предполагающую нечто модель, проводит эксперименты и выясняет, насколько их результаты соответствуют предположению. Если они не соответствуют, ученый вносит изменения в модель и повторяет процесс тестирования.

В области социальных данных меня больше всего интересуют эксперименты с элементами прескрипции, в которых пользователь получает возможность изменить некий параметр и увидеть, как это повлияет на результаты. Обработка данных о пробке на дороге позволяет предупредить водителей, сообщить им о том, насколько увеличится время в пути, и предложить альтернативные варианты маршрута. Если большинство водителей изберет какой-то один альтернативный маршрут, то на нем может возникнуть еще одна дорожная пробка. Для подобных ситуаций может быть предложен набор различных вариантов объезда и информация о том, какая часть водителей уже выбрала определенный маршрут, чтобы позволить принять решение поехать другой дорогой. Эти же данные можно использовать и для того, чтобы в целях оптимизации транспортного потока изменить частоту смены сигналов светофоров.

Один из лучших умов в области А/В-экспериментов – мой бывший коллега Рон Кохави, покинувший Amazon в 2005 году, чтобы возглавить работу по созданию экспериментально-аналитической группы в Microsoft. Чтобы создать базовые практики удачного онлайн-экспериментирования, Ронни и его команда провели сотни экспериментов примерно на двадцати интернет-сайтах (в том числе на MSN.com и Bing). Исходя из своего опыта Ронни утверждает: «Получить цифры легко; получить цифры, заслуживающие доверия, – трудно»[62]. Я полностью с этим согласен. Более того, то же самое можно сказать и о наиболее фундаментальных аспектах обработки данных: создавать рекомендации просто, оценивать рекомендации – трудно.

При проведении А/В-экспериментов на интернет-сайтах очень многое может пойти не так. Для начала: от 15 до 30 процентов просмотров страниц некоторых сайтов приходится на долю поисковых роботов, и эти визиты надо идентифицировать и отделить от посещений людей (если, конечно, обработку данных не проводят с целью оптимизации роботов).



Существует также искушение разделять пользователей на экспериментальные и контрольные группы по каким-то признакам, а не произвольно. Однако, каким бы разумным это ни выглядело на первый взгляд, большинство неслучайных способов выборки искажают результаты экспериментов и загрязняют аналитику. Например, если пользователь часто удаляет со своего компьютера cookie-файлы, его могут отнести к одной группе во время первого визита на сайт и к другой во время следующего. В некоторых экспериментах отнесение к той или иной группе коррелирует с сайтом, на котором был пользователь, прежде чем попасть на экспериментальную или контрольную страницу. Действительно ли люди более склонны кликать рекламу зонтиков на сайте WeatherCha

Кроме того, ученые стараются учитывать переменные, которые могут влиять на поведение пользователя, но не включены в эксперимент. Результаты эксперимента могут быть искажены багом, который появился в версии программного обеспечения, предложенной одной группе, но отсутствует во всех остальных. Проблемой могут быть и особенности работы программного обеспечения на различных платформах. Люди, использующие для доступа в сеть айфоны, и люди, использующие для этого телефоны на Андроиде, не являются равномерно распределенными и не зависимыми друг от друга группами населения. По результатам эксперимента может казаться, что на сайт чаще заходят пользователи с айфонами, но на самом деле различались не клиентские базы, а программное обеспечение – частота обновления страниц по умолчанию в айфонах выше. Придумывать такого рода версии и расследовать их – ежедневная работа детективов мира данных.

Компании экспериментировали на потребителе, предлагая новые товары или упаковки, задолго до появления интернета. Новизна состоит в возможности экспериментировать в режиме реального времени и моментально получать обратную связь, которая может быть использована для совершенствования продуктов и услуг, в том числе информационных. В прошлом цикл «идея – результат» измерялся месяцами. Теперь же, в мире с выходом в интернет, его продолжительность сократилась до минут. Это в корне отличается от временных параметров медицинских исследований, где эффекты от изменения рецептуры лекарства могут проявляться через недели, месяцы, годы, а то и десятилетия.

61

Hern, Alex, “Why Google Has 200M Reasons to Put Engineers over Designers”, Guardian, February 5, 2014, http://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers.

62

Kohavi, Ron, Roger Longbotham, and Toby Walker, “Online Experiments: Practical Lessons”, IEEE Computer 43, no. 9 (September 2010), pp. 82–85, http://www.computer.org/csdl/mags/co/2010/09/mco2010090082-abs.html.