Страница 4 из 12
> Матрица2[3, ] <-c(3,8,13)
# Матрица2[3 строка, ] <-c(3,8,13)
> Матрица2
[,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12
[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15
R также работает и с массивами данных (array), которые сходны с матрицами, но могут иметь данные с более чем двумя измерениями. Очевидно, что массивы данных – это просто расширенные матрицы. Как и в матрицах, все элементы массива должны иметь одинаковый тип данных. Массивы данных создаются при помощи функции array. Например, массив из последовательности чисел 1,2 …30, состоящий из двух матриц с тремя строками и пятью столбцами можно создать следующим образом:
> Мой.Массив<– array(1:30, dim=c(3,5,2))
# аргумент dim указывает на размер массива данных
# dim =c (3,5,2) создает из вектора 1:30 массив данных из 3 строк, 5 столбцов и 2 матриц.
# если бы R понимал по-русски, то эту команду можно было бы ввести так:
# Мой.Массив<– множество(1:30, размер=объединить(3,5,2))
> Мой.Массив
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 16 19 22 25 28
[2,] 17 20 23 26 29
[3,] 18 21 24 27 30
> dim(Мой.Массив)
[1] 3 5 2
Заметим, что в функции array в скобках сначала дается вектор 1:30, из которого создается массив данных, затем следует выражение dim=c(3,5,2), предписывающее с помощью функции объединения создать массив данных, соответственно, из трех строк, пяти столбцов и двух матриц.
Отдельный элемент массива данных можно извлечь, обозначив его положение (номер строки, номер столбца и номер матрицы) в квадратных скобках. Например, цифру, стоящую в третьей строке и третьем столбце второй матрицы можно извлечь следующим образом:
Мой.Массив[3,3,2]
> Мой.Массив[3,3,2]
[1] 24
Таблицы данных, которые в отличие от матриц могут состоять из различных типов данных, широко используются в R. Таблицы данных создаются при помощи функции data.frame(). Покажем, как это делается на конкретном примере. Сначала создадим три вектора данных, из которых один будет текстовый, а два других цифровых:
> Успеваемость <-c('Отличники', 'Хорошисты' , 'Троечники', 'Двоечники')
> Успеваемость
[1] "Отличники" "Хорошисты" "Троечники" "Двоечники"
> Студенты<-c(2, 5,10,2)
> Студенты
[1] 2 5 10 2
> Студентки <-c(3,7,14,1)
> Студентки
[1] 3 7 14 1
Теперь создаем таблицу с помощью функции data.frame, которую назовем Моя.Таблица:
> Моя.Таблица <– data.frame(Успеваемость,Студенты, Студентки)
> Моя.Таблица
Успеваемость Студенты Студентки
1 Отличники 2 3
2 Хорошисты 5 7
3 Троечники 10 14
4 Двоечники 2 1
# узнаем является ли Моя.Таблица таблицей:
> is.data.frame(Моя.Таблица)
# по-русски: таблица.ли(Моя.Таблица)
[1] TRUE
# по-русски ответ: ИСТИНА, то есть этот объект является таблицей
Далее проверим структуру данных Моя.Таблица с помощью следующей функции:
> str(Моя.Таблица)
# по-русски: структура(Моя.Таблица)
'data.frame': 4 obs. of 3 variables:
$ Успеваемость: Factor w/ 4 levels "Двоечники","Отличники",..: 2 4 3 1
$ Студенты : num 2 5 10 2
$ Студентки : num 3 7 14 1
# по-русски: 'data.frame'– таблица
# 4 obs. of 3 variables – 4 наблюдения из 3 переменных
# знак $ обозначет переменные, включенные в таблицу
# Factor w/ 4 levels – фактор из 4 уровней
# num – количественные данные
Отдельный элемент таблицы можно извлечь, обозначив его положение (номер строки и номер столбца) в квадратных скобках:
> Моя.Таблица[3,1]
[1] Троечники
Levels: Двоечники Отличники Троечники Хорошисты
Внизу из текстового элемента Моя.Таблица есть следующая строка: «Levels: Двоечники Отличники Троечники Хорошисты». Levels в переводе на русский язык означает Уровни. Так называемые «Уровни» (Levels) присваиваются факторам. Фактор – это векторный объект, кодирующий категориальные данные (классы), в состав которых входят как номинальные, так и порядковые данные. Номинальные данные – это качественные данные, которые отражают условные коды количественно не измеряемых категорий, которые также не подлежат ранжированию или упорядочиванию. В качестве примера номинальных данных можно привести индексы отделений связи, поскольку они служат только для их идентификации. По отношению к номинальным данным возможны только операции «равенство-неравенство».
В отличие от номинальных порядковые данные могут быть ранжированы как в порядке убывания, так и увеличения какого-либо их качества. Но в отличие от обычных количественных данных, которые можно выразить в конкретных единицах и к которым можно применить широкий круг алгебраических операций, к порядковым данным можно применить лишь операции «равенство-неравенство», а также «больше-меньше». Порядковые данные используются в том случае, когда порядок ранжирования элементов по какому-то критерию важен, а вот количественные различия между различными рангами этих элементов не поддаются точной оценке.
Например, такие ответы респондентов на вопрос социолога, как: «согласен», «частично согласен», «нет могу сказать, согласен или не согласен», «частично не согласен», «не согласен», – можно ранжировать по степени их согласия или степени их несогласия, в то время как количественную разницу между вариантами этих ответов трудно оценить в каких-то конкретных единицах. Следовательно, эти данные являются порядковыми или ранжируемыми. Впрочем, иногда порядковым данным могут присваиваться какие-то условные порядковые числа, но и в этом случае количественная разница между различными рангами одной и той же последовательности носит весьма условный характер. Например, порядковыми данными являются пятибалльные оценки знаний учащихся, поскольку они не могут быть сгенерированы методом измерения в конкретных единицах, а получены методом достаточно субъективного оценивания.
Созданная нами переменная Успеваемость относится к числу ранжируемых, но по умолчанию уровни фактора в R присваиваются текстовому вектору в алфавитном порядке. Поскольку переменная Успеваемость является порядковой, то такая градация в этом случае не подходит. Поэтому сначала проверим тип данных переменной Успеваемость, а затем присвоим значение различных уровней фактора в порядке возрастания успеваемости с помощью следующей команды:
> class(Успеваемость)
[1] "character"
# тип данных – текстовый
> Успеваемость <– factor(Успеваемость, order=TRUE, levels=c('Двоечники', 'Троечники', 'Хорошисты', 'Отличники'))
# превращает вектор Успеваемость в упорядоченный фактор
# число уровней фактора задается при помощи аргумента levels
> Успеваемость
[1] Отличники Хорошисты Троечники Двоечники
# уровни фактора в порядке их возрастания
Levels: Двоечники < Троечники < Хорошисты < Отличники
> class(Успеваемость)
[1] "ordered" "factor"
# тип данных – упорядоченный фактор
Список в R представляет собой упорядоченный набор объектов с различными типами данных. В результате под одним своим именем списки могут включать векторы, матрицы, таблицы и другие списки. Список можно создать при помощи функции list():
> Мой.Список <– list(Моя.Таблица, Успеваемость, Матрица1,Матрица2)
# по-русски: Мой.Список <– список(Моя.Таблица, Успеваемость, Матрица1,Матрица2)
> Мой.Список
[[1]]
Успеваемость Студенты Студентки
1 Отличники 2 3