Добавить в цитаты Настройки чтения

Страница 3 из 5



Если бы у нас было гораздо больше носков разных типов и цветов, то ряд непарных оказался бы таким длинным, что нам пришлось бы заново пересматривать всю их последовательность каждый раз, когда мы вытаскиваем из кучи новый. Это трудоемко и долго, особенно если искомый предмет оказывается в самом конце.

В 1953 году математик Ханс Питер Лун, работавший в корпорации «IBM», выдвинул идею, которая положила начало созданию альтернативной структуры, облегчающей потенциальную замедленность, присущую любому комплексному поиску. Эта структура иногда называется ассоциативным массивом, или хеш-таблицей (посыплем еще немного соли на раны старушки Марджи). Хеш-таблица делает то же, что и массив: она сохраняет вещи в коллекции, но использует более строгую последовательность (например, большой черный носок всегда идет после красного носка) для немедленного так называемого поиска за постоянное время.[11]

Он называется непрерывным, потому что не зависит от длины последовательности. Впрочем, это не всегда так. Многие вещи в программном обеспечении, к неудовольствию исследователей и практиков, не подчиняются фундаментальным законам – в отличие от природы. Но здесь мы допускаем, что из-за малого числа несопоставимых носков синапсы Марджи будут возбуждаться быстро и вызывать почти немедленную реакцию.

Как мы увидим позже, непрерывный поиск чаще всего происходит в тех случаях, когда можно смоделировать задание при помощи формулы, которая избавляет от необходимости выполнять его снова и снова, перебирая все существующие позиции.[12] Известно, что формула, используемая с хеш-таблицами, называется хеш-функция. Ее работа – поместить вещь в кучу так, чтобы потом можно было вытащить ее из памяти достаточно быстро.

Но отложим эти соображения в сторону. Суть в том, что подход, который использует одни и те же знания повторно, может быть быстрее, чем тот, который их не использует. Это особенно полезно знать, когда речь идет о выполнении каких-либо повторяющихся операций. Например, вы выбираете в магазине коробку свеч в виде букв для именинного пирога вашей дочери. Или же вы собрались постирать, и вам нужно отделить белое постельное белье от цветного и нижнего. Или вы пытаетесь составить самое длинное слово из определенного набора букв, как в британском телешоу «Каунтдаун».

В каждой из этих ситуаций вы спросите себя: можно ли сделать это задание быстрее, используя память – свою собственную или общечеловеческую? В примере с кучей носков, составляя ряд носков без пары, мы договорились, что у нас не может быть больше пяти их типов. В примере с коробкой свеч мы бы выбрали любые подходящие нам четыре буквы, когда мы натыкаемся на них, а не искали бы отдельно L или U и так далее.

В случае с грязной одеждой удобнее складывать ее в три разные корзины, чтобы не перебирать перед стиркой. А в ситуации с самым длинным словом можно взять первое пришедшее на ум слово и посмотреть, нельзя ли удлинить его путем склонения или перевода в форму множественного числа. Здесь наш первоначальный выбор служит как бы префиксом[13] (взятым из памяти) к последующим словам.

Есть замечательная структура под названием префиксное дерево, которая именно это и делает. Она пользуется тем, что цифры и номера имеют общие префиксы, чтобы производить такие операции, как проверка орфографии и автокоррекция слов, которые вы вводите в строку поиска слишком быстро и при этом делаете ошибки.

РАЗВЕ НЕ ЗДОРОВО, ЧТО ОБЫДЕННОЕ СТАНОВИТСЯ УВЛЕКАТЕЛЬНЫМ, СТОИТ ТОЛЬКО ПОДОЙТИ К НЕМУ ИНАЧЕ?!

2

Выбери свой размер

На следующий день после Рождества медсестра Эппи Тоам из шотландского городка Инвернесс рано утром пришла к местному универмагу в ожидании новогодней распродажи. У Эппи довольно распространенный размер одежды, и она хочет первой ворваться в магазин, чтобы успеть ухватить все блузки своего размера. Ей нужно делать все быстро. Ситуация может выйти из-под контроля. В прошлом году во время такой распродажи 15 человек получили травмы, а потом пришлось вызывать военных, чтобы прекратить давку. Как Эппи может повысить свои шансы заполучить нужные блузки, до того как они попадут в чужие руки?

Подсказка. Рассматривайте этот пример, доводя его до абсурда. Что, если стойки с одеждой будут располагаться по всей ширине магазина?

Если мы ищем что-то среди большого количества одежды, то нужно ли просматривать всю коллекцию? Другими словами, если у нас 100 вещей, должны ли мы просмотреть все 100, то есть занимает ли такая операция линейное время? Смысл линейной функции в том, что если для нахождения чего-то в куче из 100 вещей нужна минута, то можно ожидать, что у нас уйдет две минуты на поиск нужной вещи в куче из 200 предметов гардероба.

Обычно так и происходит. Однако коллекция может обладать одним интересным качеством, а именно: она поддается сортировке, что позволяет найти вещь по алгоритму логарифмического времени, примерно за 7 шагов, а не за 100. Вспомните, что логарифм – это всего лишь нечто обратное экспоненте. Составляя компьютерные программы, мы предполагаем, что основание логарифма есть 2, поэтому логарифм 100 это log2 100, то есть получается примерно 7. Это значительное улучшение можно увидеть, переходя от линейного времени к логарифмическому. Поэтому логарифм и является таким важным понятием, особенно когда мы говорим о скорости роста. К этому мы будем часто возвращаться в следующих главах.



Для начала давайте представим, как Эппи носится по магазину с сияющим от гордости и тщеславия лицом. Шарф развевается, ее боевые крики вырываются сквозь стиснутые зубы и отражаются от стен универмага. Она все утро готовилась к этому моменту.

ЦЕЛЬ: НА ВЫБРАННОЙ ВЕШАЛКЕ НАЙТИ БЛУЗКУ СВОЕГО РАЗМЕРА.

МЕТОД 1: ДЛЯ ВЫБРАННОЙ ВЕШАЛКИ. ПРОСМОТРЕТЬ ВСЕ БЛУЗКИ ОДНУ ЗА ДРУГОЙ.

МЕТОД 2: ДЛЯ ВЫБРАННОЙ ВЕШАЛКИ. НАЧНИТЕ ИСКАТЬ СВОЙ РАЗМЕР В СЕРЕДИНЕ ВЕШАЛКИ. ЕСЛИ ТАМ ВИСЯТ БЛУЗКИ РАЗМЕРОМ БОЛЬШЕ, НУЖНО ПОЙТИ НАЛЕВО. ЕСЛИ ЖЕ РАЗМЕРЫ МЕНЬШЕ – НАПРАВО.

Вот так можно наглядно сравнить эти два метода. Очевидно, что поиски по методу 1 станут значительно медленнее, чем по методу 2, по мере увеличения количества блузок на вешалке.

Как вы уже, вероятно, догадались, в методе 2 выгодно используется знание двух фактов. Во-первых, блузки, скорее всего, отсортированы по размерам. А во-вторых, поскольку у Эппи ходовой размер, то скорее всего нужные ей блузки висят где-то в середине вешалки. Зная это, можно не только начать с середины, но и передвигаться влево или вправо своеобразными скачками, каждый раз сокращая коллекцию вдвое. Такой подход и есть визитная карточка алгоритма логарифмического времени.[14] Это та самая интуиция, которую мы используем, чтобы найти нужное слово в словаре, или имя в телефонном справочнике, или статью в энциклопедии. Те же интуитивные знания мы будем применять, если заснем над скучной книгой и захотим на следующий день возобновить чтение с того же места. В целом можно охарактеризовать этот подход как принцип отбрасывания ненужной информации.

11

В этом примере Марджи не особенно заботится о том, в каком порядке лежат неразобранные носки. Все, что ее беспокоит, – все носки должны быть отложены в одну сторону.

12

Например, найти сумму первых чисел n было бы сложно, если бы вы проходились по этим n-числам один за другим, каждый раз суммируя пары. Гораздо удобнее использовать вместо этого формулу n x (n+1)/2 (прим. автора).

13

Префикс в информатике – начало строки программы (прим. ред.).

14

Сходным образом процесс многократного удвоения чисел от 1 до n логарифмичен, поскольку мы можем сделать не более чем log n скачков, прежде чем получим n. Например, сколько лет уйдет на зарабатывание 1 млн долларов, если начать с 1 доллара и каждый год удваивать его? Можно посчитать это вручную или же применить log2 1 000 000 = 19,93 года (прим. автора).