Добавить в цитаты Настройки чтения

Страница 4 из 13

На протяжении этой главы мы неоднократно будем возвращаться к графику, изображенному на рис. 1.

Рис. 1. Эволюция объема информации в генах и в мозге за всю историю жизни на Земле. Сплошная кривая, проходящая через темные точки, показывает количество битов информации, заключенной в генах у различных организмов, чье приблизительное время появления, согласно имеющимся геологическим данным, также указано на диаграмме. Поскольку количество ДНК, приходящейся на одну клетку, неодинаково в пределах таксона, указано лишь минимальное для данной группы значение. Данные взяты из работы Бриттена и Давидсона (1969). Пунктирная кривая, проходящая через светлые точки, дает приблизительную оценку информации, заключенной в мозге и нервной системе тех же самых организмов. Точки, соответствующие информации, содержащейся в мозге амфибий и еще более простых животных, должны были бы находиться левее диаграммы. Хотя на диаграмме и указано количество битов информации в генетическом материале вирусов, но нет уверенности, что вирусы действительно появились несколько миллиардов лет назад. Возможно, что они появились намного позже и развились из бактерий и других более сложных организмов путем потери ими своих функций[4]. Если бы надо было отразить внесоматическую информацию, накопленную людьми (библиотеки и т. д.), то соответствующая точка оказалась бы далеко справа за границей диаграммы

Сплошная линия на нем указывает время самого первого появления на Земле различных главных таксономических групп. Конечно, в природе существует значительно большее число таких групп, чем указано точками на этом графике. Изображенной на нем кривой соответствует огромное количество точек, которыми следовало бы обозначить десятки миллионов различных таксономических групп, появившихся на нашей планете с того времени, когда на ней возникла жизнь. Главные из них, которые возникли в самое последнее время, как правило, наиболее сложны.

Некоторое представление о сложности организма может быть получено, если просто изучать его поведение, то есть число различных функций, которые он призван выполнять в своей жизнедеятельности. Но о сложности можно судить также по минимуму информации, заключенному в генетическом материале организма. Типичная человеческая хромосома имеет одну очень длинную молекулу ДНК, завитую в спираль, так что место, которое она занимает в пространстве, значительно меньше, чем если бы она была распрямлена. Эта молекула ДНК построена из более мелких строительных блоков, несколько напоминающих ступеньки и боковинки веревочной лестницы. Блоки называются нуклеотидами и существуют в четырех различных вариантах. Язык жизни, наша наследственная информация, определяется последовательностью четырех различных типов нуклеотидов. Можно сказать, что алфавит языка наследственности состоит всего из четырех букв.

Но книга жизни очень богата, типичная молекула ДНК хромосомы человека состоит примерно из пяти миллиардов частей или нуклеотидов. Наследственные программы всех других таксонов на Земле записаны тем же языком, тем же кодом. И этот единый для всех язык наследственности является одним из свидетельств происхождения всех организмов на Земле от единого предка, от общего для всех начала жизни, которое отделено от нас примерно четырьмя миллиардами лет.

Информация, содержавшаяся в любом послании, обычно измеряется в единицах, называемых битами – сокращение от binary digit, что значит «двоичный знак». Простейшие арифметические вычисления используют не десять разрядов (как делаем мы вследствие того, что по случайности эволюции обладаем десятью пальцами), а только два – 0 и 1. Так что на любой достаточно четкий вопрос может быть дан ответ в виде 0 или 1, «да» или «нет». Если бы наследственный код был описан на языке, имеющем не четыре, а две буквы, то число битов в молекуле ДНК равнялось бы удвоенному числу пар нуклеотидов. Но так как существует четыре типа нуклеотидов, число битов информации в ДНК в четыре раза больше числа пар нуклеотидов. Таким образом, если одна хромосома имеет пять миллиардов (5 · 109) нуклеотидов, она содержит двадцать миллиардов (2 · 1010) битов информации. (Символ 109 указывает, что за единицей следует определенное число нулей – в данном случае девять.)

Как много информации содержится в двадцати миллиардах битов? Чему она будет соответствовать, если записать ее в обычной книге современным человеческим языком? Наши алфавитные языки, как правило, имеют от двадцати до сорока букв плюс одну-две дюжины цифр и знаков препинания; таким образом, для таких языков оказывается достаточно шестидесяти четырех независимых значков. Так как 26 равняется 64 (2 × 2 × 2 × 2 × 2 × 2), то не потребуется более шести битов, чтобы определить каждый значок. Мы можем представить себе ситуацию в виде «игры в двадцать вопросов», в которой каждый ответ соответствует одному биту. Предположим, что значок, который загадан, – это буква Н. Мы можем найти ее следующим образом.

Первый вопрос: Буква ли это (0) или же какой-то другой значок (1)?

Ответ: Буква (0).

Второй вопрос: Находится ли она в первой (0) или во второй (1) половине алфавита?

Ответ: В первой половине (0).

Третий вопрос: Из шестнадцати букв первой половины алфавита находится ли она в числе первых восьми (0) или вторых восьми (1) букв?

Ответ: Среди вторых восьми (1).





Четвертый вопрос: Среди вторых восьми букв находится ли она в первой половине (0) или во второй половине (1)?

Ответ: Во второй половине (1).

Пятый вопрос: Из этих букв принадлежит ли она к числу Л, М (0) или к Н, О (1)?

Ответ: К числу Н, О (1).

Шестой вопрос: Это Н (0) или 0(1)?

Ответ: Это Н (0).

Определение буквы Н, таким образом, равносильно двоичному тексту 001110. Но нам потребовалось не двадцать вопросов, а лишь шесть, и именно в этом смысле было сказано, что всего шести битов достаточно, чтобы определить заданную букву. Поэтому двадцати миллиардам битов соответствует примерно три миллиарда букв (2 · 1010/6 ≈ 3 · 109). Если считать, что в среднем слове примерно шесть букв, то информация, содержащаяся в хромосоме человека, соответствует приблизительно пяти миллионам слов (3 · 109/6 = 5 · 108). Полагая, что на обычной странице примерно три сотни слов печатного текста, мы получаем цифру в два миллиона страниц (5 · 108/3 · 102 ≈ 2 · 106). Если средняя книга содержит пятьсот таких страниц, то информация, заключенная в одной-единственной хромосоме человека, соответствует четырем тысячам таких томов (2 · 106/5 · 102 = 4 · 103). Ясно теперь, что последовательность ступенек лестницы ДНК по объему заключенной в ней информации сравнима с гигантской библиотекой. Точно так же ясно, сколь богатая библиотека необходима, чтобы описать такой тщательно сконструированный и тонко функционирующий объект, каким является человеческое существо. Простые организмы обладают меньшей сложностью и меньшими возможностями и требуют поэтому меньшего объема генетической информации. Каждый из «Викингов» – космических аппаратов, опустившихся на Марс в 1976 году, имел в своих компьютерах заранее запрограммированные инструкции объемом в несколько миллионов битов. Таким образом, «Викинг» обладал несколько большей «генетической информацией», чем бактерия, хотя и значительно меньшей, чем водоросли.

График на рис. 1 показывает также минимальное количество наследственной информации в ДНК различных живых организмов. Видно, что величина эта у млекопитающих меньше, чем у людей: большинство млекопитающих имеют меньше наследственной информации, чем человек[5]. Внутри некоторых таксонов, например амфибий, количество наследственной информации сильно изменяется от вида к виду. Есть мнение, что значительная часть этой ДНК может быть излишней или нефункциональной. По этой причине график дает минимальное количество ДНК для каждого таксона.

4

Существует довольно убедительная точка зрения, что вирусы – это получившие самостоятельность органы бактерий. – Прим. редакции.

5

Вообще говоря, впрямую из графика этого не следует. – Прим. редакции.