Добавить в цитаты Настройки чтения

Страница 32 из 33

Подведем итог:

• каждая молекула действует с силой, пропорциональной ее массе и изменению скорости 2νx;

• количество молекул, действующих с этой силой, пропорционально их концентрации c и их скорости νx;

• таким образом, общее давление всех молекул пропорционально cmν2 x.

На практике каждая молекула имеет разную скорость, и ν2 x представляет собой средний квадрат скорости всех молекул.

Более того, поскольку движение молекул абсолютно хаотично, никакое из направлений нельзя считать основным, то есть составляющие скорости в трех направлениях пространства νx, νy, и νz равны. Однако математика говорит нам, что скорость удовлетворяет выражению: ν² = ν2 x + ν2 y + ν2 z, то есть в данном случае ν² = 3ν2 x.

Отсюда следует, что общее давление просто пропорционально cmν². Скорость ν называется средней квадратичной скоростью молекул.

Но что мы видим благодаря опыту? Что давление P пропорционально cT (см. предыдущую часть). Таким образом, P пропорционально cmν² и пропорционально cT. Это значит, что температура T пропорциональна mν². Это можно записать как:

Температура пропорциональна средней кинетической энергии молекул, какой мы ее определили (EK = ½mν²). Отметим, что формула одинакова для жидкостей и твердых тел.

Такое определение средней микроскопической кинетической энергии молекул характеризует температуру неподвижного тела, в то время как макроскопическая кинетическая энергия характеризует движение тела. Таким образом, кинетическая энергия одновременно связана с понятием температуры и понятием макроскопического движения.

Может возникнуть вопрос, что это за коэффициент ½, который мы ввели. Объяснение этого мы оставим до следующей главы. А пока что заметим, что этот фактор абсолютно не меняет физического смысла кинетической энергии.

ТЕМПЕРАТУРА ТВЕРДОГО ТЕЛА И ЖИДКОСТИ

В случае с газом мы убедились, что температура была связана со скоростью молекул. А как обстоит дело с твердыми телами и жидкостями? В твердых телах, например, молекулы и атомы не могут передвигаться на большие расстояния.

На самом деле даже в твердом теле атомы никогда не находятся в полном покое: несмотря на тесное соседство, они колеблются на определенном месте. То есть они обладают средней кинетической энергией, пропорциональной температуре твердого тела: чем теплее твердое тело, тем сильнее вибрируют составляющие его атомы.

Та же картина с жидкостью в состоянии покоя: молекулы могут перемещаться и, соответственно, обладают средней кинетической энергией, пропорциональной температуре жидкости.





Единица кинетической энергии – джоуль. Чтобы представить себе ее масштаб, заметим, что макроскопическая кинетическая энергия шагающего человека приблизительно равна 60 Дж. У машины, движущейся со скоростью 50 км/ч, около 100 000 Дж. Что же касается микроскопической кинетической энергии нашего тела, находящегося в покое (при температуре 37 °C), она составляет несколько десятков миллионов джоулей! То есть большая часть нашей энергии скрыта, поскольку представлена на микроскопическом уровне: движение молекулярного уровня гораздо более быстрое и повсеместное, чем в нашем масштабе.

ВРАЩЕНИЕ И КОЛЕБАНИЕ МОЛЕКУЛ

Выше мы говорили о том, что температура связана со средней кинетической энергией молекул. Мы говорили только о перемещении молекул, которое сообщает им кинетическую энергию. Но даже неподвижная молекула может обладать кинетической энергией.

Для примера возьмем двухатомную молекулу кислорода О2 (см. схему выше). Она может вращаться вокруг своей оси, то есть атомы кислорода могут обладать скоростью, даже если в целом молекула не перемещается. Более того, атомы кислорода могут вибрировать, то приближаясь, то удаляясь друг от друга, как если бы они были соединены пружиной (в реальности такой пружиной служит электростатическая сила).

Таким образом, к кинетической энергии перемещения нужно добавить кинетическую энергию вращения и колебания молекулы. Однако температура характеризует только перемещение по оси (это подтверждают рассуждения, которые позволили нам провести связь между температурой и скоростью молекул): следует ли из этого, что выражение пропорциональности между температурой и средней кинетической энергией молекул ложно?

Нет, потому что при столкновениях кинетическая энергия молекул естественно распределяется между перемещением, вращением и колебанием. Иными словами, чем больше средняя скорость молекул, тем более быстрое вращение и более сильное колебание вызывают столкновения. То есть при обычных температурах кинетическая энергия вращения и колебания пропорциональна кинетической энергии перемещения, а температура остается пропорциональна всей средней кинетической энергии молекул.

3. Потенциальная энергия и закон сохранения энергии

До сих пор мы рассматривали энергию кинетическую в ее макро- и микроскопическом (температура) аспектах. Она одна воплощает в себе все формы энергии, какие мы только можем себе представить: например, электрическая энергия связана с движением электронов по проводам.

Что же касается барреля нефти, бифштекса или ядерного топлива, они обладают энергией только в том смысле, в котором они способны вырабатывать кинетическую энергию. То есть они обладают потенциалом раскрыть кинетическую энергию. Другими словами, они обладают потенциальной кинетической энергией (что мы сокращаем до потенциальной энергии).

Из этого мы могли бы заключить, что на самом деле они энергией не обладают, ибо она всего лишь потенциальна. Но на самом деле под энергией мы подразумеваем настоящую кинетическую энергию и скрытую, которой предстоит себя проявить. То есть понятие энергии объединяет «явную» кинетическую энергию и кинетическую энергию потенциальную.

Приведем пример, чтобы точнее сформулировать понятие потенциальной энергии. Бросим мяч с крыши многоэтажного дома (силу трения в данном примере мы не учитываем). Изначально у мяча нет никакой скорости, то есть никакой кинетической энергии. Но благодаря гравитации мяч приобретет скорость, то есть он обладает «потенциальной кинетической энергией». Чему она равна?

Пророем яму к центру Земли: мяч продолжит падать с ускорением до тех пор, пока не достигнет центра Земли. То есть именно в центре Земли мяч достигнет своей максимальной кинетической энергии, которую мы обозначим EKmax. Это значит, что в момент броска мяч обладал «потенциальной энергией», равной EKmax (= он обладал потенциалом выработать кинетическую энергию EKmax) (➙ рис. 7.1).

Рис. 7.1 – Свободное падение мяча в туннеле, пересекающем Землю

С другой стороны, достигнув центра Земли, мяч больше не сможет ускоряться: его потенциальная энергия станет нулевой. То есть потенциальная энергия мяча, которую ему придает тяжесть, напрямую связана с высотой, на которой он находится: чем с большей высоты он падает, тем большую скорость он разовьет при падении.