Добавить в цитаты Настройки чтения

Страница 5 из 5

Второе.

Сохраняя заданную величину шероховатости, при отжиге в сверхвысоком вакууме этот слой («шуба») восстанавливается (при 1 ~ 850 °C) в монокристаллическую атомарно чистую алмазную поверхность, создавая оптимальные условия дтя проведения ростовых процессов эпитаксии на поверхности кристалла [13].

Третье.

«Шуба», обладая своей некой макроструктурой, отличается (по нашим наблюдениям) повышенной твердостью относительно основной кристаллографической матрицы алмаза, характерными только для «шубы» оптическими свойствами, включая эффект частичной поляризации проходящего светового потока.

Бегущие в объеме волны, отражаясь от этого слоя, могут формировать в объеме алмаза систему стоячих волн, имеющих узлы в границе раздела алмаз – «шуба» и пучности на границе раздела, например, кристалла с атмосферой. По данным Оже-спектроскопии, после обработки поверхности плоскопараллельной алмазной пластины на противоположной поверхности этой пластины, которая не соприкасалась с работающим инструментом, фиксируются аномалии в отражательных спектрах упругих электронов, говорящие об изменении электронной подсистемы этой поверхности алмаза.

Создав в объеме кристалла свою систему, стоячие волны в процессе воздействия продолжают взаимодействовать с бегущими волнами. Отсюда, динамическая волновая среда в объеме алмаза начинает обладать определенной системой взаимодействующих бегущих и стоячих волн. В этом случае проявляется вероятность концентрации волновой энергии и образование высокоэнергетических доменов на тех участках объема алмаза, которые не соответствуют оптимальному (гармоничному) прохождению волновых процессов. Например, на дефектах кристаллической структуры.

По нашим данным, в этом случае в динамической волновой среде происходит изменение (корректировка) дефектно-примесной структуры алмаза. Ниже мы приводим результаты исследований алмазной пластины до нашего воздействия и после волнового возбуждения.

Таблица 2.1. Пластина до волновой обработки

Таблица 2.2. Пластина после волнового воздействия

По результатам этих исследований делаем вывод:: после нашего волнового воздействия увеличилось содержание атомов азота в A-форме в объеме алмаза на ~25 %, произошло снятие внутренних напряжений в пластине, улучшились оптические характеристики алмаза, в частности произошло уменьшение величины оптической анизотропии.

Известно, что кристаллы алмаза обладают анизотропией физических характеристик. Например, анизотропия механических свойств этого упругого тела (мягкие и твердые направления обработки) позволяет рассматривать алмаз как некий нелинейный элемент при протекании в нем волнового процесса упругих деформаций. Вследствие этого при нашей обработке материала в его объеме происходит резкое умножение частоты формируемого флуктуирующего волнового поля алмаза.

Это умножение частоты происходит за счет вклада в волновой процесс определенного вида гармоник высокого порядка, кратных основной частоте возбуждения, задаваемой алгоритмом. Это свойство алмаза расширяет возможности изменения его дефектно-примесной структуры, а также повышает эффективность формирования поверхностных и объемных диссипативных структур при использовании квантово-волновой технологии.

Важную роль при формировании динамической волновой среды и протекании волнового процесса в целом оказывает и форма обрабатываемого кристалла. Это вполне очевидно, т. к. бегущие когерентные волны отражаются в объем от внутренних поверхностей алмаза. Эффект формы алмаза может формировать и влиять на определенные свойства динамической волновой среды. Наблюдается также и влияние высокочастотной динамической волновой среды на конфигурацию определенных форм кристалла. Связь взаимная. В этом случае не исключена возможность в поверхностной области алмаза значительной локальной концентрации волновой энергии и, как следствие, трансформации (изменения) формы кристалла. В отдельных случаях нами наблюдался локальный выброс в атмосферу материи алмаза при нормальных условиях на тех участках поверхности кристалла, которые не подвергались воздействию инструмента («шуба» отсутствовала).





На рис. 2.12а приведено изображение пластины из синтетического алмаза. В центре видна затравка. Также наблюдается типичная картина внутренних напряжений в полном соответствии с кристаллографией кристалла. Светлые области вокруг места расположения затравки вызваны внутренними напряжениями по причине высокой скорости роста кристалла в начальный период синтеза. На рис. 2.12б приведено изображение бокового ребра пластины.

Рис. 2.12. Пластина синтетического алмаза (а), ребро пластины (б)

Рис. 2.13. Пластина синтетического алмаза (a) и трансформированное ребро после воздействия (б)

Эта пластина была обработана по сложному алгоритму. Суть алгоритма обработки заключалась в следующем. После воздействия первого алгоритма на поверхность пластины следующий более высокочастотный алгоритм задавался таким образом, чтобы сохранялась кратность фаз накладываемых волновых функций. Для каждой поверхности пластины сложный алгоритм включал пять простых алгоритмов, синхронизированных по этому принципу (принципу кратности фаз). Верхняя и нижняя плоскости подвергались одинаковому воздействию. Волновое возбуждение кристалла Но обеим плоскостям было проведено в одних и тех же условиях. На рис. 2.13 приведено изображение пластины после волнового воздействия.

Сравнение рис. 2.12 и 2.13 показывает произошедшие изменения в алмазной пластине. В данном случае нас интересует трансформация боковых ребер алмаза и образование неких «желобков» на каждом ребре. По всей видимости, характер протекания волновых процессов в алмазной пластине был дополнительно обусловлен формой кристалла и созданием «шубы» на обеих поверхностях.

Динамическая волновая среда находилась как бы между обкладками «конденсатора», где роль обкладок играла «шуба». В этом случае концентрация высокочастотной волновой энергии особо проявилась на ребрах. Общий характер изменения внутреннего состояния пластины хорошо наблюдается в поляризованном свете (рис. 2.14).

Подобный сложный алгоритм обработки больше не применялся нами для обьиной полировки плоскопараллельных пластин. Только один раз в последующих экспериментах был применен подобный режим обработки для синтетических пластин алмаза, выращенных методом CVD (Chemical vapor deposition – химическая кристаллизация алмаза (кристаллизация из газовой фазы)). И в этот раз волновые процессы проявили себя по-другому.

Нами были обработаны три калиброванные пластины, выращенные методом CVD, с обеих сторон вышеописанным сложным алгоритмом. В результате воздействия толщины пластин изменились. Две пластины увеличились в толщине на ~60 мкм, а третья пластина стала толще на ~75 мкм. При этом общая масса пластин осталась неизменной.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.